import numpy as np
import pandas as pd
from mltreelib.data import Data
from mltreelib.tree import Tree
mltreelib : Machine Learnign with Tree Based Library
A real tree based ML package
This package evovled from the attempt to make right kind of Decision Tress which was ideated by many people like Hastie, Tibshirani, Friedman, Quilan, Loh, Chaudhari.
Install
pip install mltreelib
How to use
Create a sample data
= 1000
n_size = np.random.RandomState(1234)
rnd = pd.DataFrame({
dummy_data 'numericfull':rnd.randint(1,500,size=n_size),
'unitint':rnd.randint(1,25,size=n_size),
'floatfull':rnd.random_sample(size=n_size),
'floatsmall':np.round(rnd.random_sample(size=n_size)+rnd.randint(1,25,size=n_size),2),
'categoryobj':rnd.choice(['a','b','c','d'],size=n_size),
'stringobj':rnd.choice(["{:c}".format(k) for k in range(97, 123)],size=n_size)})
dummy_data.head()
numericfull | unitint | floatfull | floatsmall | categoryobj | stringobj | |
---|---|---|---|---|---|---|
0 | 304 | 18 | 0.908959 | 8.56 | a | c |
1 | 212 | 24 | 0.348582 | 14.35 | a | g |
2 | 295 | 15 | 0.392977 | 21.98 | a | y |
3 | 54 | 20 | 0.720856 | 5.33 | a | q |
4 | 205 | 21 | 0.897588 | 23.03 | c | k |
Create a Dataset
= Data(df=dummy_data)
dataset print(dataset)
print('Pandas Data Frame : ',np.round(dummy_data.memory_usage(deep=True).sum()*1e-6,2),'MB')
print('Dataset Structured Array : ',np.round(dataset.data.nbytes*1e-6/ 1024 * 1024,2),'MB')
5] dataset.data[:
Dataset(df=Shape((1000, 6), reduce_datatype=True, encode_category=None, add_intercept=False, na_treatment=allow, copy=False, digits=None, n_category=None, split_ratio=None)
Pandas Data Frame : 0.15 MB
Dataset Structured Array : 0.03 MB
array([(304, 18, 0.9089594 , 8.56, 'a', 'c'),
(212, 24, 0.34858167, 14.35, 'a', 'g'),
(295, 15, 0.39297667, 21.98, 'a', 'y'),
( 54, 20, 0.7208556 , 5.33, 'a', 'q'),
(205, 21, 0.89758754, 23.03, 'c', 'k')],
dtype=[('numericfull', '<u2'), ('unitint', 'u1'), ('floatfull', '<f4'), ('floatsmall', '<f4'), ('categoryobj', 'O'), ('stringobj', 'O')])