mltreelib : Machine Learnign with Tree Based Library

A real tree based ML package

This package evovled from the attempt to make right kind of Decision Tress which was ideated by many people like Hastie, Tibshirani, Friedman, Quilan, Loh, Chaudhari.

Install

pip install mltreelib

How to use

Create a sample data

import numpy as np
import pandas as pd
from mltreelib.data import Data
from mltreelib.tree import Tree
n_size = 1000
rnd = np.random.RandomState(1234)
dummy_data = pd.DataFrame({
    'numericfull':rnd.randint(1,500,size=n_size),
    'unitint':rnd.randint(1,25,size=n_size),
    'floatfull':rnd.random_sample(size=n_size),
    'floatsmall':np.round(rnd.random_sample(size=n_size)+rnd.randint(1,25,size=n_size),2),
    'categoryobj':rnd.choice(['a','b','c','d'],size=n_size),
    'stringobj':rnd.choice(["{:c}".format(k) for k in range(97, 123)],size=n_size)})
    
dummy_data.head()
numericfull unitint floatfull floatsmall categoryobj stringobj
0 304 18 0.908959 8.56 a c
1 212 24 0.348582 14.35 a g
2 295 15 0.392977 21.98 a y
3 54 20 0.720856 5.33 a q
4 205 21 0.897588 23.03 c k

Create a Dataset

dataset = Data(df=dummy_data)
print(dataset)
print('Pandas Data Frame        : ',np.round(dummy_data.memory_usage(deep=True).sum()*1e-6,2),'MB')
print('Dataset Structured Array : ',np.round(dataset.data.nbytes*1e-6/ 1024 * 1024,2),'MB')
dataset.data[:5]
Dataset(df=Shape((1000, 6), reduce_datatype=True, encode_category=None, add_intercept=False, na_treatment=allow, copy=False, digits=None, n_category=None, split_ratio=None)
Pandas Data Frame        :  0.15 MB
Dataset Structured Array :  0.03 MB
array([(304, 18, 0.9089594 ,  8.56, 'a', 'c'),
       (212, 24, 0.34858167, 14.35, 'a', 'g'),
       (295, 15, 0.39297667, 21.98, 'a', 'y'),
       ( 54, 20, 0.7208556 ,  5.33, 'a', 'q'),
       (205, 21, 0.89758754, 23.03, 'c', 'k')],
      dtype=[('numericfull', '<u2'), ('unitint', 'u1'), ('floatfull', '<f4'), ('floatsmall', '<f4'), ('categoryobj', 'O'), ('stringobj', 'O')])